
A Memory-Efficient Accelerator for DNA Sequence
Alignment with Two-Piece Affine Gap Tracebacks

Jing-Ping Wu1, Yi-Chien Lin1, Ying-Wei Wu1, Shih-Wei Hsieh2, Ching-Hsuan Tai2, Yi-Chang Lu1,2

1Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan
2Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617 Taiwan

Email: {b05901014, b05901054, b05901100, r07943017, r08943177, yiclu}@ntu.edu.tw

Abstract—Previously, dynamic-programming-based DNA
sequence aligners were mostly implemented with a penalty
function of the one-piece affine gap model. When aligning se-
quences with longer gaps, the two-piece affine gap model provides
better results at the cost of memory usage, which becomes
an issue especially for aligners with memory-hungry traceback
capabilities. In this paper, we design a memory-efficient scheme
for traceback recording with the two-piece penalty scoring, so
that the aligner can be realized on an ASIC. Our design is
implemented with TSMC 40nm technology, and the proposed
aligner can speed up pairwise alignment by 70X compared to
the CPU approach.

Index Terms—sequence alignment, Smith-Waterman, two-
piece affine gap, traceback

I. INTRODUCTION

Aligning two biological sequences is an important step in
many biological and medical researches. With alignment re-
sults, researchers can evaluate similarities between sequences
or determine the locations of variants. Dynamic-programming-
based Smith-Waterman method with one-piece affine gap
scoring is one of the most popular tool for sequence alignment
(e.g. [1]). For a subject sequence with length m and a query
sequence with length n, the conventional one-piece scoring
model requires three matrices H , I , and D, all sized m× n,
to be filled using Eqs. (1) to (3) below. This process is usually
referred as the dynamic-programming stage (DP stage) in
sequence alignment.

H(i, j) = max{H(i− 1, j − 1) + S(i, j),

I(i, j), D(i, j), 0},
(1)

I(i, j) = max{H(i, j − 1)− go, I(i, j − 1)− ge}, (2)

D(i, j) = max{H(i− 1, j)− go, D(i− 1, j)− ge}. (3)

S(i, j) gives the match score between the ith nucleotide of the
subject sequence and the jth nucleotide of the query sequence.
The go represents the penalty score of Gap Open, and the
ge represents the penalty scores of Gap Extension. Usually
we have go > ge, which indicates that the existence of a
gap has more biological meaning than the length of a gap.

This work was partially supported by the Ministry of Science and Technol-
ogy, Taiwan, under Grant number MOST 109-2221-E-002-177. The authors
would like to thank Taiwan Semiconductor Research Institute for providing
EDA Cloud services.

Following this idea, in the cases where the gap is long, Gotoh
et al. [2] proposed that the impact of lengths should be further
discounted so that long gaps can be successfully identified.
Therefore, a second set for penalty scoring (g′o and g′e) is
introduced:

I ′(i, j) = max{H(i, j − 1)− g′o, I ′(i, j − 1)− g′e}, (4)

D′(i, j) = max{H(i− 1, j)− g′o, D′(i− 1, j)− g′e}. (5)

And Eq. (1) has to be revised into Eq. (6):

H(i, j) = max{H(i− 1, j − 1) + S(i, j),

I(i, j), D(i, j), I ′(i, j), D′(i, j), 0},
(6)

The traceback (TB) stage in sequence alignment is to
determine the optimal alignment path, which can be done by
retrieving records of cells calculated in the DP stage. In gen-
eral, for an N -piece affine gap model, a naive implementation
is to use k-bits to store the traceback information for each cell,
where k is given by:

N = dlog2(2N + 2)e+ 2N. (7)

For each cell of traceback matrix T, dlog2(2N + 2)e bits are
allocated for Eq. (6), and additional 2N bits are allocated for
the 2N equations generated from N sets of penalty scoring
functions for insertion and deletion. Removing even one bit in
each cell for traceback recording will make a big difference
in memory usage.

Previous researches mainly focused on the DP stage, due
to the time complexity of the algorithm. Lin et al. [4] has
implemented a hardware that can handle both DP and TB
stages based on the one-piece affine gap model. However,
as mentioned above, the two-piece affine gap model is more
preferred. Since memory usage is always a concern, in this
work, we propose a novel scheme to reduce the traceback
memory for the two-piece affine-gap model by 28%. In
addition, we design a hardware aligner, including both DP and
TB stages, based on this new scheme. 79 GCUPS is achieved
by the hardware we implemented, which is a 71× speed-up
compared to its CPU counterpart.



gap	length	in	base	pairs

pe
na
lty

	sc
or
es

{	go,	ge} Two-piece	
method

{	g’o,	g’e}

C GT CC G C T TA C A A G G A A A AT T G A G A A G C A A C TA C T C C G A AA

TA C T C G A AA-

C GT CC G C T TA C A A G TA C T C- - - - - - - - - - - - - - - - -

C GT CC G C T TA C A A G TA C T C G A AA- - - - - - - - - - - - - - - - - -

Reference:

One-piece	method	(go,	ge):

Two-piece	method:

One-piece	method	(g’o,	g’e):

An	example	from	exon	19,	a	dele?on	of	EGFR

(a) (b)

Fig. 1: (a) Penalty scores calculated using different affine gap models. (b) An example of different alignment results using
one-piece and two-piece affine gap scoring rules.

II. LOOKUP TABLE FOR TWO-PIECE AFFINE GAP
TRACEBACK

As suggested by [2], we have g′e < ge and (go + ge) <
(g′o + g′e), so that the set (go, ge) can be used to handle
shorter gaps, while (g′o, g

′
e) can be applied to cover longer

gaps as shown in Fig. 1(a). H(i, 0) = H(0, j) = 0 and
I(i, 0) = I(0, j) = I ′(i, 0) = I ′(0, j) = D(i, 0) = D(0, j) =
D′(i, 0) = D′(0, j) = −∞,∀i, j are the boundary conditions
used for Fig. 1(b).

For one-piece affine gap traceback, Lin et al. [4] proposed
a 3-bit approach, which saves 25% of memory usage than the
naive 4-bit approach. Following this idea, we find that if we
compare the inequalities of Ho = H(i, j)− go, Ie = I(i, j)−
ge, De = D(i, j)− ge, H ′o = H(i, j)− g′o, I ′e = I ′(i, j)− g′e
and D′e = D′(i, j) − g′e in advance, the total bits needed for
recording two-piece traceback can be reduced. All possible
conditions are summarized in TABLE I, which can be used to
determine every current traceback direction based on its last
traceback direction and the source of the current highest score.
Combinations that are not possible for valid gap penalties are
excluded from TABLE I.

In the upper part of TABLE I, the current highest score
of (i, j) is the result from H(i− 1, j− 1)+S(i, j) in Eq. (6).
In such cases, for the cell (i, j), if the last traceback direction
(preTrace) is M (at (i + 1, j + 1)), the traceback direction
at (i, j) should be M as well. However, if preTrace is not
M, we need to decide whether (i, j) is the starting position
of a new gap or a continuation of an existing gap. Different
from the conventional one-piece affine gap model, there are
other four types of traceback directions in the two-piece affine
gap model besides M, which are I, D, I ′ and D′. For the
cases where preTrace is I or D, we can decide if (i, j) is
the beginning of a new gap by the relationship of (Ho, Ie)
or (Ho, De). For example, if preTrace = I and Ho ≥ Ie,
the current traceback direction would then be M. On the
other hand, if Ie > Ho, then the current traceback direction
would be I. A similar approach could be applied for the cases
where preTrace = D. As for the cases where preTrace is
I ′ or D′, the same approach could also be applied, but Ho

should be replaced by H ′o, Ie should be replaced by I ′e and
De should be replaced by D′e. To summarize, there is only one
case if preTrace =M, and only two possible cases each for

TABLE I: RULES FOR DETERMINING THE CURRENT
TRACEBACK DIRECTION

score source H(i− 1, j − 1) + s(i, j)

preTrace M I D I′ D′

Ho ≥ Ie ≥ De M M M Ho′ ≥ Ie′ ≥ De′ M M
Ho ≥ De > Ie M M M Ho′ ≥ De′ > Ie′ M M
Ie > Ho ≥ De M I M Ie′ > Ho′ ≥ De′ I′ M
Ie ≥ De > Ho M I D Ie′ ≥ De′ > Ho′ I′ D′

De > Ho ≥ Ie M M D De′ > Ho′ ≥ Ie′ M D′

De > Ie > Ho M I D De′ > Ie′ > Ho′ I′ D′

preTrace M I I′ D D′

I(i, j) I I I′ D D′

D(i, j) D I I′ D D′

I′(i, j) I′ I I′ D D′

D′(i, j) D′ I I′ D D′

the other types of directions. Therefore, there are 16 distinct
combinations in total for the upper table in TABLE I.

When the source of the current score is either I(i, j),
D(i, j), I ′(i, j) or D′(i, j) in Eq. (6), the current traceback
direction can be determined easily. As listed in the lower table
in TABLE I, if preTrace is M, then the current traceback
direction will be the same with the source of the current
score. Otherwise, it will be the same with preTrace. This
simplification is based on the fact that, for a certain gap in an
alignment, the gap penalty is fixed within a gap, and which
set of gap penalties is used by the gap is determined at the
end of the gap. Thus, when preTrace is M and the source
of the current score is not from H(i− 1, j − 1), it represents
the end of a gap, and the current traceback direction can be
uniquely determined by the source of the current score. Once
the traceback direction is determined, it will not change until
the next "match-cell" is encountered, reflecting the fact that
the gap penalty will remain the same in a certain gap.

When elaborating TABLE I, we have made an assumption
based on our observations. The assumption is that direct
insertion-deletion transition will never present in DNA align-
ment. It is because that usually the penalty for mismatching is
lower than the penalties for gap extension. Under this condi-
tion, direct insertion-deletion transition will not happen, hence
TABLE I can be applied without leaving any combination. As
mentioned earlier, a total of 16 combinations can be found in
the upper table, and 4 combinations are in the lower table.
For global alignments, 5 bits are enough to record all of



the 20 combinations. As for local alignments, 5 bits are also
enough to cover all 20 + 1 combinations. Thus, we reduced the
memory usage for traceback from 7-bit (given by Eq. (7)) to 5-
bit, which is a 28% reduction. The algorithm used to determine
the traceback path is shown as Algorithm 1. The symbol
"↖", "←" and "↑" are the outputs from the traceback module,
and the "+" symbol stands for concatenation. Although there
are five different traceback directions used in the traceback
algorithm, for the case I and I ′, both of them represent an
insertion, which will cause the current position of traceback
moves toward left. The only difference is the gap penalty they
adopted, thus we can use one symbol "←" to cover both cases.
Based on the same reason, case D and D′ can be covered by
"↑".

III. HARDWARE ARCHITECTURE

Dynamic Programming (DP) Module: The module con-
sists of a PE array, one internal buffer, and 32 Echelon Shift
Registers (ESR). The PE array consists of 512 PEs, which can
process 512 cells located on the same anti-diagonal line at a
time. The function of the internal buffer is to keep data on the
block edge when the length of the subject sequence is longer
than the number of PEs. The internal buffer is composed of
two dual-port SRAM modules, which can support read and
write simultaneously. The SRAM modules have 2048 words,
and each word contains 80 bits. The ESR is a module used to
synchronize output data generated by the PE array.

The PE array processes the alignment anti-diagonally. In
one-piece alignment, each DP cell needs information from
three sources, which include its upper, left and upper left cells.
A PE of two-piece alignment needs two more scores, which
come from its left and upper cells, but calculated with the
second set of penalty scores. Thus, it will take score from
five directions to implement two-piece alignment. It is also
essential to record the max score and from which cell the
max score comes, so that we can obtain the starting point of
traceback.

Since cells will be updated anti-diagonally, cells in the
same column will be updated in different cycles. The con-
figuration of the ESR is shown in Fig. 3, where the numbers
labeled on the cells of the DP matrix indicate which cycle each
cell will be updated. In order to write data in the same column
of the matrix into the SRAM at the same cycle, we need to
use ESRs. Since each SRAM can store 16 directions in one
cycle, each SRAM will read data from 16 PEs, so we need
32 = 512/16 SRAMs modules and 32 ESR. For data from nth

PE in every 16 PEs, (16− n) shifts are introduced before the
data being written into the SRAM. As a consequence, output
data generated in different cycles will be synchronized before
written into the SRAM. As shown in Fig. 3, though cells in the
same column will be updated in different cycles, it will also
need to pass different numbers of shift registers, and the data
will be written into the SRAM in the same cycle eventually.
As a result, the nth column of each SRAM will store data
of the nth column of DP matrix. The purpose of storing data
to the DP matrix in this manner is to simplify the process of

Algorithm 1: Two-piece Affine Gap Traceback
input : max index i, max index j,

traceback records T
output: alignment path

1 Path⇐ ∅, P reTrace⇐M
2 while (i 6= 0) ∧ (j 6= 0) ∧ (T (i, j) 6= ”0”) do
3 PreTrace⇐ TableLookUp (T (i, j),PreTrace)
4 switch PreTrace do
5 case M : Path⇐ ”↖ ” + Path, i−−, j −−
6 case I : Path⇐ ”← ” + Path, j −−
7 case D : Path⇐ ” ↑ ” + Path, i−−
8 case I′ : Path⇐ ”← ” + Path, j −−
9 case D′ : Path⇐ ” ↑ ” + Path, i−−

10 end
11 end
12 alignment path ⇐ Path

data prefetching in the Traceback module since it prefetchs
data columnwisely.

Traceback Record Blocks: As the PE array keeps oper-
ating, each PE will generate traceback records following the
rules summarized in TABLE I. These records are stored in
Traceback Record Block (TRB), an array formed by SRAM
modules. Each SRAM module is a single-port design of 2048
words, and there are 80 bits in each word. Since each traceback
record takes 5 bits, one word can store the information from
16 traceback cells in one clock cycle. With 512 parallel PEs,
32 = 512/16 SRAM modules must operate simultaneously in
one TRB to save data generated in every cycle. In order to
pipeline DP and TB, two sets of TRB were used. The traceback
record of the first alignment will be written into the first TRB,
and the Traceback Module can start tracing back by reading
data in the first TRB when the DP is done. In the same time,
the second pass of DP can start immediately and write new
traceback records into the second TRB without overwriting
the data needed for the first traceback. Afterwards, the DP
Module and Traceback Module will switch to read and write
the other TRB.

Traceback (TB) Module: When performing traceback
processes, a 16 × 5 = 80-bits long word will be fetched from
TRB in one cycle. It should be noted that not every cell will be
used in the traceback stage. Therefore, fetching cells that are
not likely to be used is not desirable. We decide to fetch the
cells dynamically based on the current position of traceback.
Two memory blocks are used to store the data from TRB,
and once the position of traceback nears the boundary of the
block that is currently being used, the traceback module will
record the current position, and then fill the other block based
on this information. During this prefetch process, the memory
blocks are filled from right to left, column by column. Since
the traceback process always follows the directions toward left,
up or upper-left, by filling the memory blocks in this order,
the traceback process only needs to halt one or two cycles for
the prefetch process. The prefetch address module resolves the
cases where the stored position is not a multiple of 16. In such
cases, the prefetch address module will request data from two



Fig. 2: The hardware architecture of the aligner with traceback.

Fig. 3: Writing data through Echelon Shift Register.

SRAMs and send the rearranged data to the traceback module.

IV. RESULTS

A. CPU and GPU

Our CPU code is a modified version of the KSW2
library from a versatile nucleotide sequence mapper, min-
imap2, developed by Li [5]. For fair comparison, the near-
optimal banded Suzuki-Kasahara algorithm [6] in KSW2 is
replaced by the original global optimal alignment version.
When running on an Intel Core i7-7700 processor with 64 GB
DRAM installed, a performance of 1.12 GCUPS (Giga Cell
Updates Per Second) is achieved. Most GPU implementations
of sequence alignment are based on one-piece affine gap
scoring. We modified the state-of-the-art GPU based library
GASAL2 from Ahmed et al. [7] to support the two-piece affine
gap scoring scheme. When performing the global alignment
with traceback computation, the original one-piece GASAL2
could reach 88.97 GCUPS, while the modified two-piece
version can achieve 56.49 GCUPS. It is because the two-piece
affine gap scoring requires roughly 65% more multiply-add
operations and 72% more comparison instructions than the
one-piece version. It should be noted that all of the GPU code
in this work is compiled with CUDA version 9.1 and executed
on a single NVIDIA Geforce GTX 1080 Ti GPU.

B. ASIC

The hardware is implemented with TSMC 40nm technol-
ogy. According to the post-layout simulation, our hardware
can achieve 79.65 GCUPS. We obtain a 71.11× speed-up
compared with CPU and a 1.41× speed-up with GPU. The
power consumption of CPU is 20.85 W and that of GPU is
193.47 W. In contrast, our hardware consumes only 1.81 W,
which is 150× more efficient then the GPU platform. The chip
specifications are summarized in TABLE II.

Fig. 4: The layout of the
proposed hardware ac-
celerator.

TABLE II: The Specifications
of the Hardware Aligner

Cell library TSMC 40 nm
Clock 308 MHz

Core area 38.46 mm2

Chip area 38.96 mm2

Gate count 1,122,876
Dual-Port SRAM usage 40 KB

Single-Port SRAM usage 5 MB
Power 1815 mW

TABLE III: Comparison Between Platforms

Devices Speed Power Speedup Efficiency
(GCUPS) (W) (GCUPS/W)

CPU 1.12 20.85 1 0.0537
GPU 56.49 193.47 50.43 0.292
Ours 79.65 1.81 71.11 43.9

V. CONCLUSIONS

In this paper, we implement a hardware accelerator for
DNA sequence alignment with the two-piece affine gap trace-
back. In our design, only 5 bits are needed to store the direction
record of each DP cell, which uses 28% less memory than the
naive implementation. Our design can align a sequence pair up
to 2048×2048, and a 71× speed-up can be achieved compared
to its CPU counterpart.

REFERENCES

[1] O. Gotoh, ”An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, 162(3), pp. 705–708, 1982.

[2] O. Gotoh, ”Optimal sequence alignment allowing for long gaps,” Bul-
letin of Mathematical Biology, 52(3), pp. 359–373, 1990.

[3] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “FPGASW: acceler-
ating large-scale smith-waterman sequence alignment application with
backtracking on FPGA linear systolic array,” Interdisciplinary Sciences:
Computational Life Sciences, 10(1), pp. 176–188, 2018.

[4] M. J. Lin, Y. C. Li, and Y. C. Lu, “Hardware accelerator design for
dynamic-programming-based protein sequence alignment with affine gap
tracebacks,” 2019 IEEE Biomedical Circuits and Systems Conference,
pp. 1–4, 2019.

[5] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, 34(18), pp. 3094–3100, 2018.

[6] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations
for faster semi-global alignment of long sequences,” BMC Bioinformat-
ics, 19(1), pp. 33–47, 2018.

[7] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,
“GASAL2: a GPU accelerated sequence alignment library for high-
throughput NGS data,” BMC Bioinformatics, 20(1), pp. 520, 2019.


	Introduction
	Lookup Table for Two-Piece Affine Gap Traceback
	Hardware Architecture
	Results
	CPU and GPU
	ASIC

	Conclusions
	References

